doi: 10.15389/agrobiology.2014.1.3eng

UDC 631.52:577.113.5:575.2:51-76:57.087.11

STATISTICAL ANALYSIS AND MOLECULAR MARKERS IN PLANT BREEDING FOR HETEROSIS (review)

Yu.V. Chesnokov, N.V. Kocherina, A.M. Artemyeva

All-Russian Research Institute of Plant Industry, Russian Academy of Agricultural Sciences,
44, ul. Bolshaya Morskaya, Saint Petersburg, 190000 Russia,
e-mail: yu.chesnokov@vir.nw.ru

Received June 25, 2013


A contribution of molecular markers to investigation of genetic diversity, including diversity in collection accessions preserved in gene banks of plant genetic resources (PGR), is discussed. It is shown the role of establishment of interaction between molecular divergence, phenotype divergence and coancestry of PGR accessions, as well as the possibility to use molecular-genetic analysis for classification upon heterotic groups and PGR management. On the basis of statistical analysis and own results of investigations, it is shown the possibility to establish interaction between molecular divergence and heterosis, and perspectives for using combined molecular-genetic and statistical methods of analysis. Discussed methodical approaches are mainly in use in different breeding program abroad. In Russia, the interest to these approaches is raising too. Among potential applications of molecular markers it is necessary to note selection and identification of parent forms on which new breeding populations are obtained. It makes a key moment for most breeders. Use of statistical approaches as an addition to molecular and genetic ones allows not only to simplify and classify selection of parent pairs, but also to reduce considerably the expenses for breeding material evaluation.

Keywords: plant genetic resources, molecular markers, statistical analysis, heterosis, plant breeding.

 

Full article (Rus)

 

REFERENCES

1. Karp A., Kresovich S., Bhat K.V., Ayad W.G., Hodgkin T. Molecular tools in plant genetic resources conservation: a guide to the technologies. IPGRI Technical Bulletin, 1997, № 2.
2. Spooner D., Van Treuren R., De Vicente M.C. Molecular marker for gene bank management. IPGRI Technical Bulletin, 2005, № 10.
3. Chesnokov Yu.V. Geneticheskie resursy rastenii i sovremennye metody DNK-tipirovaniya [Plant genetic resources and modern DNA typing]. St. Petersburg, 2007.
4. Kocherina N.V., Chesnokov Yu.V. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2013, 32: 26-32.
5. Dudley J.W. Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Sci., 1993, 33: 660-668. CrossRef
6. Francia E., Tacconi G., Crosatti C., Barabaschi D., Bulgarelli D., Dall’Aglio E., Vale G. Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult., 2005, 82: 317-342. CrossRef
7. Chesnokov Yu.V. Kartirovanie lokusov kolichestvennykh priznakov u rastenii [QTLs mapping in plants]. St. Petersburg, 2009.
8. Kocherina N.V., Chesnokov Yu.V. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2013, 30: 42-47.
9. Kocherina N.V., Artem'eva A.M., Chesnokov Yu.V. Doklady Rossel'khozakademii, 2011, 3: 14-17.
10. De Vienne D., Damerval C. Mesures de la divergence genetique: 3. Distances cal-culees a partier de marqueurs moleculares. In: Les Distances Genetiques /M. Lefort, D. De Vienne (eds.). INRA, Paris, 1985: 41-57.
11. Rogers J.S. Measures of genetic similarity and genetic distance. In: Studies in Genetics. VII /M.R Wheeler (ed.). University of Texas Publ. 7213, 1972: 145-153.
12. Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS USA, 1979, 76: 5269-5273.
13. Dillmann C., Bar-Hen A., Guerin D., Charcosset A., Murigneux A. Comparison of RFLP and morphological distances between maize Zea mays L. inbred lines. Consequences for germplasm protection purposes. Theor. Appl. Genet., 1997, 95: 92-102. CrossRef
14. Dillmann C., Charcosset A., Goffnet B., Smith J.S.C., Dattee Y. Best linear unbiased estimators of the molecular genetic distance between inbred lines. In: Advances in Biometrical Genetics /P. Krajewski, Z. Kaczmarek (eds.). Poznan, 1997: 105-110.
15. Wang J., Bernardo R. Variance of marker estimates of parental contributions to F2 and BC1 derived inbreds. Crop Sci., 2000, 40: 659-665. CrossRef
16. Bar-Hen A., Charcosset A. Relationship between molecular and morphological distances in a maize inbred lines collection: Application for breeders’ right protection. In: Biometrics in plant breeding: Application of molecular markers. Proc. 9th Meeting of the Eucarpia Section Biometrics in Plant Breeding /J.W. Van Oijen, J. Jansen (eds.). Wageningen, 1994: 57-66.
17. Ward J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assos., 1963, 58: 236-244. CrossRef
18. Melchinger A.E. Genetic diversity and heterosis. In: The genetics and exploitation of heterosis in crops /J.G. Coors, S. Pandey (eds.). Proc. International Symposium on the Genetics and Exploitation of Heterosis in Crops (CIMMYT, Mexico 17-22/08/1997). Mexico, 1999, chap. 10: 99-118.
19. Smith O.S., Smith J.S.C., Bowen S.L., Tenborg R.A., Wall S.J.
Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis and RFLPs. Theor. Appl. Genet., 1990, 80: 833-840. CrossRef
20. Bernardo R., Kahler A.I. North American study on essential derivation in maize: inbreds developed without and with selection from F2 populations. Theor. Appl. Genet., 2001, 102: 986-992. CrossRef
21. Damerval C., De Vienne D. Divergence morphologique et divergence moleculare: 1. Apport des margueurs proteiques. In: Les distances genetiques /M. Lefort-Buson, D. De Vienne (eds.). INRA, Paris, 1985: 3-22.
22. Moser H., Lee M. RFLP variation and genealogical distance, multivariate distance, heterosis, and genetic variance in oats. Theor. Appl. Genet., 1994, 87: 947-956. CrossRef
23. Burstin J., Charcosset A., Barriere Y., Herbert Y., De Vienne D., Damerval C. Molecular markers and protein quantities as genetic descriptors in maize. II. Prediction of performance of hybrids for forage traits. Plant Breeding, 1995, 114: 427-433. CrossRef
24. Burstin J., Charcosset A. Relationship between phenotypic and marker distances: theoretical and experimental investigations. Heredity, 1997, 118: 519-526. CrossRef
25. Hayes H.K., Johnson I.J. The breeding of improved selfed lines of corn. J. Am. Soc. Agron., 1939, 31: 710-724.
26. Krug C.A., Viegas G.P., Paolieri L. Hibridos comercialis de Milho. Bragantia, 1943, 3: 367-552.
27. Godshalk E.B., Lee M., Lamkey K.R. Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize. Theor. Appl. Genet., 1990, 80: 273-280. CrossRef
28. Dudley J.W., Saghal Maroof M.A., Rufener G.K. Molecular markers
and grouping of parents in maize breeding programs. Crop Sci., 1991, 31: 718-723. CrossRef
29. Melchinger A.E., Messmer M.M., Lee M., Woodman W.L., Lamkey K.R. Diversity and relationships among U.S. maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci., 1991, 31: 669-678. CrossRef
30. Boppenmeier J., Melchinger A.E., Brunklaus-Jung E., Geiger H.H. Herrmann R.G. Genetic diversity for RFLPs in European maize inbreds: I. Relation to performance of Flint × Dent crosses for forage traits. Crop Sci., 1992, 32: 895-902. CrossRef
31. Livini C., Ajmone-Marsan P., Melchinger A.E., Messmer M.M., Mot-
to M. Genetic diversity of maize inbred lines within and among heterotic groups revealed by RFLPs. Theor. Appl. Genet., 1992, 84: 17-25. CrossRef
32. Messmer M.M., Melchinger A.E., Boppenmeier J., Herrmann R.G., Brunkslaus-Jung E. RFLP analysis of early-maturing European maize germ plasm. I. Genetic diversity among flint and dent inbreds. Theor. Appl. Genet., 1992, 83: 1003-1012. CrossRef
33. Dubreuil P., Dufour P., Krejci E., Causse M., De Vienne D., Gallais A., Charcosset A. Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci., 1996, 36: 790-799. CrossRef
34. Tersac M., Blanchard P., Brunel D., Vincourt P. Relations between heterosis and enzymatic polymorphism in populations of cultivated sunflowers (Heliantus annuus L.). Theor. Appl. Genet., 1994, 88: 49-55. CrossRef
35. Gentzbittel I., Zhang Y.X., Vear F., Griveau B., Nicolas P. RFLP studies of genetic relationships among inbred lines of the cultivated sunflower, Heliantus annuus L.: evidence for distinct restorer and maintainer germplasm pools. Theor. Appl. Genet., 1994, 89: 419-425. CrossRef
36. Bark O.H., Heavey M.J. Similarities and relationships among populations
of the bulb onion estimated by RFLPs. Theor. Appl. Genet., 1995, 90:
407-414. CrossRef
37. Keim P., Shoemaker R.C., Palmer R.G. Restriction fragment length polymorphism diversity in soybean. Theor. Appl. Genet., 1989, 77: 786-792. CrossRef
38. Deu M., Gonzalez de Leon D., Glaszmann J.C., Degremont I., Chan-
tereau J., Lanaud C., Hamon P. RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor. Appl. Genet., 1994, 88: 834-844. CrossRef
39. Melchinger A.E., Graner A., Singh M., Messmer M.M. Relationships among European barley germplasm. I. Genetic diversity among winter and spring cultivars revealed by RFLP. Crop Sci., 1994, 34: 1191-1199. CrossRef
40. Gallais A. Theorie de la Selection en Amelioration des Plantes. Masson ed., 1990.
41. Brown A.H.D., Burdon J.J., Jarosz A.M. Isozyme analysis of plant mating system. In: Isozyme in plant biology /D.E. Soltis, P.S. Soltis (eds.). Dioscorides Press, 1989: 73-105.
42. Van Hintum T.J.L. Comparison of marker systems and construction of a core collection in a pedigree of European spring barley. Theor. Appl. Genet., 1994, 89: 991-997. CrossRef
43. Gouesnard B., Bataillon T.M., Decoux G., Rozale C., Schoen D.J., David J.L. MSTRAT: An algorithm for building germplasm core collection by maximizing allelic or phenotypic richness. J. Heredity, 2001, 92: 93-94.
44. Zhao J., Artemyeva A., Pino Del Carpio D., Basnet R.K., Zhang N., Gao J., Li F., Bucher J., Wang X., Visser R.G.F., Bonnema G. Design of a Brassica rapa core collection for association mapping studies. Genome, 2010, 53: 884-898.
45. Artem'eva A.M., Rudneva E.N., Tsao Zh., Bonnema G., Budan Kh., Chesnokov Yu.V. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2012, 1: 21-32.
46. Falconer D.S. Introduction to Quantitative Genetics. 2nd ed. Longman, London, 1961.
47. Lefort-Buson M. Distance geneque et heterosis. 4. Utilisation des criteres biomet-riques. In: Les distances genetiques /M. Lefort-Buson, D. De Vienne (eds.). INRA, Paris, 1985: 143-157.
48. Charcosset A. Prediction of heterosis. In: Reproductive biology and plant breeding. Proc. XIIIth Eucarpia Meeting /Y. Dattee, C. Dumas, A. Gallais (eds.). Springer-Verlag, 1992: 355-369.
49. Lefort-Buson M. Distance genetique et heterisis. 1. Mise en evidence d’une relation entre heterosis and divergence genetique. Les distances genetiques /M. Lefort-Buson, D. De Vienne (eds.). INRA, Paris, 1985: 3-46.
50. De Vienne D. Marquerurs moleculares en genetique et biotechnologies vegetales. INRA, Paris, 2002.
51. Chesnokov Yu.V., Shutov A.D. 11S seed storage globulins: Are they reliable as molecular markers? Recent Research Development in Genetics and Breeding, 2004, 1(Part II): 181-194.
52. Chesnokov Yu.V.,  Shutov A.D. Doklady Rossel'khozakademii, 2006, 3: 7-11.
53. Sprague G.F., Tatum L.A. General vs specific combining ability in single crosses of corn. J. Am. Soc. Agron., 1942, 34: 923-932.
54. Gardner C.O., Eberhart S.A. Analysis and interpretation of the variety cross diallele and related populations. Biometrics, 1966, 22: 439-452. CrossRef
55. Smith O.S., Smith J.S.C. Measurement of genetic diversity among maize hybrids: A comparison of isozymic, RFLP, pedigree and heterosis data. Maydica, 1992, 37: 53-60.
56. Ajmone-Marsan P., Castiglioni P., Fusari F., Kuiper M., Motto M. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet., 1998, 96: 219-227. CrossRef
57. Frei O.M., Stuber C.W., Goodman M.M. Use of allozymes as genetic markers for predicting performance in maize single cross hybrids. Crop Sci., 1986, 26: 37-42. CrossRef
58. Sekhon M.S., Gupta V.P. Genetic distance and heterosis in Indian mustard: developmental isozymes as indicators of genetic relationships. Theor. Appl. Genet., 1995, 91: 1148-1152. CrossRef
59. Melchinger A.E., Boppenmeier J., Dhillon B.S., Pollmer W.G., Her-
rmann R.G. Genetic diversity for RFLPs in European maize inbreds. II. Relation to perfomance of hybrids within versus between heterotic groups for forage traits. Theor. Appl. Genet., 1992, 84: 672-681. CrossRef
60. Xiao J., Yuan L., McCouch S.R., Tanksley S.D. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor. Appl. Genet., 1996, 92: 637-643. CrossRef
61. Saghai Maroof M.A., Yang G.P., Zhang Q., Gravois K.A. Correlation between molecular marker distance and hybrid perfomance in U.S. southern long grain rice. Crop. Sci., 1997, 37: 145-150. CrossRef
62. Charcosset A., Lefort-Buson M., Gallias A. Relationships between heterosis and heterozygosity at marker loci: a theoretical computation. Theor. Appl. Genet., 1991, 81: 571-575. CrossRef
63. Chesnokov Yu.V., Artem'eva A.M. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2011, 5: 3-16.
64. Stuber C.W., Lincoln S.E., Wolf D.W., Helebtjaris T., Lander E.S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839.
65. Charcosset A., Essioux L. The effect of population structure on the relationship between heterosis and heterozygosity at marker loci. Theor. Appl. Genet., 1994, 89: 336-343. CrossRef
66. Zhuchenko A.A., Korol' A.B. Rekombinatsiya v evolyutsii i selektsii [Recombination in evolution and breeding]. Moscow, 1985.
67. Nienhuis J., Sills G. The potential of hybrid varieties in self-pollinating vegetables. In: Reproductive biology and plant breeding. Proc. XIIIth Eucarpia Meeting /Y. Dattee, C. Dumas, A. Gallais (eds.). Springer-Verlag, 1992387-1992396.
68. Bernardo R. Prediction of maize single cross performance using RFLPs and information from related hybrids. Crop. Sci., 1994, 34: 20-25. CrossRef
69. Henderson C.R. Best linear unbias estimation and prediction under a selection model. Biometrics, 1975, 31: 423-447.
70. Bernardo R. Estimation of coefficient of coancestry using molecular markers in maize. Theor. Appl. Genet., 1993, 85: 1055-1062. CrossRef
71. Charcosset A., Bonnisseau B., Touchebeuf O., Burstin J., Dubreuil P., Barriere Y., Gallais A., Denis J.B. Prediction of maize hybrid silage performance using marker data: comparison of several models for specific combining ability. Crop Sci., 1998, 38: 38-43. CrossRef
72. Manjarrez-Sandoval P., Carter T.E.J., Webb D.M., Burton J.W. RFLP genetic similarity and coefficient of percentage as genetic variance predictors for soybean yield. Crop Sci., 1997, 37: 698-703. CrossRef
73. Kisha T.J., Sneller C.H., Diers B.W. Relationship between genetic distance among parents and genetic variance in populations of soybean. Crop Sci., 1997, 37: 1317-1325. CrossRef
74. Burkhamer R.L., Lanning S.P., Martens R.J., Martin J.M., Talbert L.E. Prediction progeny variance from parental divergence in hard red spring wheat. Crop Sci., 1998, 38: 243-248. CrossRef

back